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6.1 Associated bundles and principal bundles

6.1.1 Why vector bundles?

In the previous lecture, vector bundles were introduced: spaces that look like a (base)
manifold which “at every point has a vector space attached” – the canonical example being
the tangent bundle, consisting of all tangent vectors at all points of a given manifold. Each
vector bundle has three types of spaces attached to it: a total space E, a base space M ,
and over every point x ∈ M the fiber over that point, Fx. In our canonical example, M
would be the space-time manifold we are interested in, Fx would be the vector space of all
tangent vectors of M at x, and E would be the collection of all Fx together.

Of course, there is some asymmetry in this construction: M and E are rather general
manifolds, but the Fx are restricted to be vector spaces. This restriction is not needed
at all: one can straightforwardly generalize the construction of a vector bundle to a fiber
bundle, where the fiber Fx can be a more general manifold. Of course, with more generality
comes the loss of structure, and so completely general fiber bundles are not of that much
interest to the physicist. However, we may be interested in replacing the “vector space
structure” of the fiber by some other interesting structure, such as that of a Lie group –
and it turns out that in particular this structure leads to some very interesting bundles in
physics. In this section, we will introduce these bundles – so called principal bundles – but
to do so, we first need to know a bit more about the concept of associated bundles.

6.1.2 Associated bundles

Recall from the previous lecture that there are two ways to think about vector bundles: we
have what we might call the “top-down approach” and the “bottom-up approach”. In the
top-down approach, the total space E is given, and we have a projection π : E → M to
our base manifold, such that for every x ∈ M the fiber over x, Fx ≡ π−1(x) is isomorphic
to some “canonical fiber” vector space F . (Of course, there are then some restrictions like
local triviality that make this structure into an actual vector bundle; these restrictions
were discussed in the previous lecture.)
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In the “bottom-up approach”, E is actually constructed, by starting from a manifold M , a
cover {Ui} of that manifold, and a canonical fiber F . We then first construct trivial bundles
over the sets Ui: Ei = Ui × F , and then we glue Ei to Ej whenever Ui and Uj overlap:
(x, vi) ∈ Ei is identified with (x, φji(x)vi) ∈ Ej. (Again, details can be found in the notes
for the previous lecture.) To make the different constructions concrete, let us consider two
very simple bundles: the two different real line bundles over the circle M = S1. One is the
cylinder (the trivial bundle S1 × R); the other is the Möbius strip.

• In the top-down construction, the entire E is constructed first. This can be done
for example by starting from R× R, and noticing that S1 can be obtained from the
first R factor by identifying x ∈ R with x+ 1. Thus, the simplest construction is to
look at E = R × R/ ∼ where (x, y) ∼ (x + 1, y). The resulting space is clearly the
cylinder. However, one might also take a different equivalence relation where (x, y) ∼
(x+ 1,−y); then E = R×R/ ∼ is the Möbius strip. (It is a useful exercise to prove
that these are essentially the only two constructions involving a linear transformation
acting on the second R factor: that for example (x, y) ∼ (x+ 1, αy) leads to a space
which is topologically equivalent to the cylinder if α > 0 and to the Möbius strip if
α < 0.)

• In the bottom-up approach, we first take a cover of the circle, thought of as the
interval [0, 1] with the end points identified. For example, we could take A = (−ε, 1

2
+

ε) and B = (1
2
− ε, 1 + ε) with some small ε, and then construct the trivial bundles

EA = A × R and EB = B × R. Then we glue together the two overlaps: we
identify (x, y) ∈ EA with (x, y) ∈ EB for x near 1

2
, and we identify (x, y) ∈ EA with

(x + 1,±y) ∈ EB for x near 0. Again, the sign determines which space we get: the
plus sign leads to the cylinder, whereas the minus sign leads to the Möbius strip.
Again, it is a useful exercise to show that these are essentially the only possibilities,
and that glueing y to αy with α ∈ R∗ leads to one of these two topologies.

Even though the top-down construction may seem a bit more elegant mathematically (as
no glueing is required), it is actually the bottom-up construction which makes it rather easy
to replace bundles by closely related bundles. The reason for this is as follows: suppose
that M and its cover {Ui} are fixed once and for all, and that x ∈ Ui ∩ Uj. Then we are
instructed to glue

Ui × F 3 (x, vi) ∼ (x, φji(x)vi) ∈ Uj × F (6.1)

where
φji(x) ∈ GL(n,R) or φji(x) ∈ GL(n,C) (6.2)

depending on whether F is a real or complex vector space. Here, of course, n is the
dimension of F . However, very often, we do not need the full GL(n,R) to glue bundles
together; for example, in the example above we did not quite need GL(1,R) = R∗ to glue
the fibers; Z2 = {−1, 1} was sufficient. Thus, we can often glue using a much smaller group

G ⊂ GL(n,R) or G ⊂ GL(n,C). (6.3)
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G may be a discrete group, as above, but we are typically interested in the slightly more
generic situation where G itself is a matrix Lie group, such als SO(n), U(n), SU(n), and
so on. The group G is called the structure group of the bundle.

Now of course, a Lie group like SO(n) can act on n-dimensional vectors, but there are
many other representations of SO(n) (or any other structure group G) as well. Let’s say
we have some other m-dimensional represtation R, that is: for g ∈ G, R[g] is some m×m
matrix acting on an m-dimensional vector space V , and the map g → R[g] is such that

R[gh] = R[g]R[h]. (6.4)

Then it is not very hard to check that we can construct a new vector bundle as follows:
start from trivial bundles Êi = Ui × V and glue these together as

Ui × V 3 (x,wi) ∼ (x,R[φji(x)]wi) ∈ Uj × V. (6.5)

It is not hard to check that this construction satisfies all the rules for the bottom-up
construction of a vector bundle, and therefore this gives a new bundle Ê which still has
base space M , but now has fiber V . E and Ê are called associated vector bundles.

6.1.3 Principal bundles

At this point, the question “why only take vector spaces as our fibers?” becomes even
more pressing. One structure group can have many different representations, and so if we
have a bunch of associated bundles, one is in no way more “fundamental” than the other.
Is there a more generic object that describes the entire set of associated bundles at once?

Indeed there is, and this can be seen by realizing that there is a very natural object that
G acts on – not a vector space, but the group G itself! The action we mean is simply
left multiplication. (Or right multiplication, of course, but it is customary to choose the
left one.) Thus, we can construct yet another associated bundle by starting from patches
Ui ×G and identifying

Ui ×G 3 (x, gi) ∼ (x, φji(x)gi) ∈ Uj ×G. (6.6)

Here, we slightly abused notation, as φji(x) now really should be thought of as an element
of the abstract group G, not as a matrix in some concrete representation.

Note that the bundle we have constructed here is no longer a vector bundle: its fiber is
not a vector space, but some Lie group G. Such an object (constructed with the same
glueing rules that vector bundles satisfy, φij(x) = φji(x)−1, and so on) is called a principal
bundle. The name principal is well chosen: it is the “generic” bundle that all associated
vector bundles can be reduced to, and can be derived from.

3



6.1.4 Why principal bundles?

Recall that in lecture 4, we encountered a quantum field theory action of the following
kind:

S =

∫
(ηµνDµφ

∗Dνφ− V (φ∗φ)) (6.7)

Here, φ(x) was a complex scalar field, and

Dµφ(x) = (∂µ + Aµ)φ(x) (6.8)

is the covariant derivative acting on this field1. By now, we know how to mathematically
phrase what is going on here: Aµ is a connection on a vector bundle over space-time, and
φ(x) is nothing but a section of that vector bunde. (So here, the vector bundle is simply
a complex line bundle.)

This construction turns out to be exactly how the electromagnetic field (or the gauge
fields for other fundamental forces like the strong and weak nuclear force, for that matter)
interacts with the quantum fields describing matter particles. Of course, there is no charged
scalar field in nature (as far as we know) that the electromagnetic field interacts with, but
there are many other types of field for which it does: the fields describing electrons, quarks,
muons, and so on. At this point, we are not able to fully describe these interactions yet,
as all of these fields are fermionic, but apart from this subtlety that we will discuss in a
lot of detail later on, the construction for all of those interactions is exacty as above.

However, in nature, there is only one electromagnetic field, but there are many particle
fields that it interacts with! So it is not the case that each particle field is a section of
some bundle which has its own, completely independent connection. In some sense, we
want the connection (the gauge field) for each of the particle field bundles to be “the
same” connection. But these particles may be described by objects with a totally different
number of indices – in other words: they may be sections of bundles with totally different
fibres. How can we still use one connection to describe all of these bundles?

The answer should be clear now: all of those bundles should be associated bundles, stem-
ming from one, single principal bundle. The topology of this principal bundle, and the
parallel transport in it, determines a “master connection”, and all connections in the indi-
vidual particle bundles should follow from this.

Thus, we need a principle bundle to make the idea that all charged particles are coupled
to “the same gauge field” mathematically precise. The question now is, of course: can
we also make the idea of such a “master connection” precise? We will soon see that the
answer is “yes”, but before doing so, let us mention a few more facts about and properties
of principal bundles.

1In the definition of A we absorbed a factor of −i compared to the notation in lecture 4.
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6.1.5 Frame bundles, sections and triviality

Let us go back to the situation where the fiber is Rn and the structure group G is the full
general linear group, G = GL(n,R). (We focus on the real case now, but everything we
say will hold for complex bundles as well.) In this case, there is an interesting construction
of the associated principal bundle, called the frame bundle.

A frame for a vector bundle is a local choice of basis for the fiber. That is, to every x ∈M ,
we associate an n-tuple of vectors

B(x) = {e1(x), e2(x), . . . , en(x)} (6.9)

such that this n-tuple forms a basis for Fx. Note that we have a collection of n vectors in
an n-dimensional space, so the above expression is an n × n matrix. Moreover, the fact
that it provides a basis means that the ei(x) are linearly independent, and so

detB(x) 6= 0. (6.10)

That is, B(x) itself can be thought of as an element of GL(n,R). Thus, the set of all
frames over a point is isomorphic to GL(n,R), and the reader probably won’t be surprised
that we can glue these GL(n,R)s together into a principal bundle: the frame bundle. We
leave it as an exercise (see e.g. Nakahara) to show that the natural glueing maps for this
frame bundle are exactly the glueing maps for the vector bundle that we started with, so
that in this way we indeed construct the associated principal bundle.

The concept of a frame bundle leads us to a theorem that is as surprising as it is simple.
One may wonder: is there an easy criterion to check whether a given vector bundle E is
trivial – i.e. whether we can write it as E ∼= M ×F? If a bundle is indeed trivial we should
be able to find an explicit isomorphism from M × F to E – that is: we can view M × F
as a trivial choice of coordinates on E. We can then look at images of coordinates of the
form (m, (1, 0, 0, . . . , 0)), for example. This should provide a section of E, and similarly the
images of (m, (0, 1, 0, . . . , 0)) provide a section, and so on. Continuing, we end up with n
different sections, but these sections should not be arbitrary: if M×F is indeed isomorphic
to E, we should be able to end up at any point in E by taking a linear combination of
these sections. That is: the sections should all be linearly independent.

Thus, if our bundle has n linearly independent sections, the bundle is trivial, and of course
the converse is also true: any trivial bundle has n linearly independent sections given by
points of the form (m, ei) where the ei are some basis vectors of F . So a vector bundle is
trivial if and only if it has n linearly independent global sections.

The above statement can be formulated much more easily in terms of frame bundles, as a
collection of n linearly independent sections of the vector bundle is nothing but a global
assignment of the B(x) in (6.9) to any x ∈ M . Thus we arrive at the statement that a
vector bundle is trivial if and only if its associated frame bundle has a global section.
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There is one further generalization of this statement: it turns out to hold for any principal
bundle, not just a frame bundle. That is, we have the following

Theorem: A principal bundle is trivial if and only if it has a global section.

The content of this theorem is rather surprising at first sight, but its proof is actually not
that hard; you will prove the statement yourself in exercise 1 of this lecture. To get further
acustomed to this surprising result, it may also be useful to realize that apparently, bundles
do not always have global sections! (Vector bundles do; they always have the zero section.)
For a very simple example, consider the boundary of the Möbius strip, which is a bundle
whose fiber consists of two points, with base space S1. Drawing a picture of this bundle,
you can quickly see that it has no smooth global section. Similar topological obstructions
to the existence of global section (though much harder to “see” in an image) occur in more
complicated situations.

6.1.6 Connections on principal bundles

Recall from the previous lecture that there are two ways to describe a connection on a
vector bundle E. The most “global” way is to use a linear map

∇ : Γ(M,E)→ Ω1(M,E) (6.11)

satisfying the Leibniz rule. The connection ∇ describes the directional derivatives of a
section (“function”) s ∈ Γ(M,E): it outputs a one-form on M with values in E, that is:
an object which we can locally (at x ∈ M) insert a tangent vector into, and which then
gives the derivative in that tangent direction as an element in the fiber.

The second description of a connection is much more in the “physics sense”: we have seen
that locally (on a patch Ui ⊂ M), one can always write the connection as ∇ = d + Ai,
where d is the exterior derivative and A is a Lie-algebra valued one form. (In the case of
vector bundles, with structure group GL(n,R), this Lie algebra is simply the space of all
n× n matrices.) However, this construction only works locally: over a different patch Uj,
we can again write ∇ = d+Aj, but on an overlap, Ai and Aj need not be the same: they
are generically connected by a gauge transformation,

Ai = φijAjφ
−1
ji − φ−1

ij dφij. (6.12)

In fact, we have already encountered this issue very early on, when we needed to describe
the Dirac monopole using two different gauge fields on two different patches.

Fortunately, in the associated frame bundle, things are a lot nicer. Note that using the
projection map π : F (E) → M (where F (E) is the frame bundle associated to E), one
can pull back the Lie algebra valued one-forms Ai to a Lie algebra valued one-form π∗Ai
on (part of) F (E). Similarly, one can pull back Aj. Now here comes the nice thing: a
(nontrivial) computation now shows that

π∗Ai = π∗Aj, (6.13)
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that is, the two pullbacks are the same, without the need to do any gauge transformations!
Thus we have finally arrived at the true, global description of our gauge field A (without
the need to introduce any derivations like ∇): A should be viewed as a Lie algebra valued
1-form, defined on the principal bundle associated to our vector bundle(s).

For completeness, let us note that not any Lie algebra valued 1-form on a principal bundle
will do. To define a good connection, the 1-form needs to have nice transformation prop-
erties when we move along the fiber, for example. More details about this can be found in
the mathematics notes for the previous lecture, as well as in section 10.1 of Nakahara.

6.2 Instantons

6.2.1 Instantons in Yang-Mills theory

We now want to turn to some examples where bundles and (particularly) connections play
an important role. The first of these examples is the concept of an instanton. Recall that
in quantum field theory (and in classical field theory, for that matter), we are interested
in finding field configurations which minimize the action S[φ] =

∫
d4xL(φ(x), ∂µφ(x)). We

encountered one way to find such configurations: by solving the Euler-Lagrange equations

∂L

∂φ
= ∂µ

∂L

∂(∂µφ)
. (6.14)

However, solving these equations is generally not straightforward: they are second (or
higher) order differential equations for φ(x). Fortunately, sometimes there are easier ways
to find minima of the action, and this is in particular true for Yang-Mills theory. For now,
let us assume that we are in the Euclidean setting, so that we treat space-time really as a
four-dimensional space, with all coordinates on an equal footing and no minus signs coming
from an indefinite metric. In such a situation, solutions to the (Euclidean) equations of
motion are called instantons. We want to find such instantons for our Yang-Mills theory
action:

S =

∫
F ∧ ?F (6.15)

Note that to simplify notation, we implicitly assumed the trace operation in our notation
here. How can we find minima of this action? To do so, let us recall that the inner product
(α, β) =

∫
α ∧ ?β is a nondegenerate and (in the Euclidean case) positive definite inner

product on the space of (here: Lie-algebra valued) two-forms. Now consider the following
integrals:

T± =

∫
(F ± ?F ) ∧ ?(F ± ?F ), (6.16)

where we choose the same sign in both factors. Since our inner product is positive definite,
we have that T± ≥ 0. Moreover, by using symmetry of our inner product and the fact that
on Euclidean two-forms the Hodge star squares to 1, we find that

2S ± 2

∫
F ∧ F ≥ 0 (6.17)
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or

S ≥
∣∣∣∣∫ F ∧ F

∣∣∣∣ . (6.18)

From the derivation, we see that equality is obtained whenever F = ± ? F . Field con-
figurations satisfying this condition are called (anti-) selfdual field configurations. To be
explicit, let us focus on the selfdual case, where F = ?F .

Why are these configurations so interesting? The reason is that we will see (in a moment
in a particular example, and in much more detail in lectures that follow) that

∫
F ∧ F

is a very special object. It is what is called a characteristic class, and it turns out to be
a discrete topological invariant of the bundle that A is a connection for. “Discrete” here
means that

∫
F ∧ F is quantized: up to a normalization factor, it can only take integer

values. In particular, that means that small changes in F do not change the value of∫
F ∧ F . And that in turn means that the solutions for which (6.18) is realized, are local

minima of the action! That is, the selfdual field configurations are instantons: solutions to
the Euclidean equations of motion!

(A different way to see this: recall that F by construction satisfies the Bianchi identity
dF = 0. However, the equations of motion can be written as d?F = 0. Clearly, if F = ?F ,
one implies the other.)

6.2.2 The SU(2) case

For concreteness, let us study the case where our gauge group is SU(2). The group SU(2)
as a manifold in fact equals S3. To see this, introduce coordinates (y1, y2, y3, y4) for S3,
with

∑
(yi)2 = 1. Then it is not too hard to see (see exercise 2) that an arbitrary element

of SU(2) can be written as
U = itiσi + t4I2 (6.19)

with I2 the 2× 2 identity matrix, and σi the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6.20)

Now, we would like to construct an explicit instanton on an R4 spacetime. In fact, we would
like our field configuration to be trivial far away from the origin: we divide spacetime into
two regions:

UN = {x ∈ R4||x| < R + ε}, US = {x ∈ R4||x| > R− ε} (6.21)

for some large R. (In fact, we have to take R → ∞ to have the arguments below work
exactly.) The patch UN is topologically trivial. US is not, but since we want F to be
vanishing on US anyway, we may as well add the point at infinity (where F remains zero)
and consider our field configuration as a configuration on S4 instead of R4, so that UN and
US are its northern and souther hemispheres.
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As we mentioned, we want our fields to be trivial far away from the origin: over US, we
pick a local connection AS = 0. On the overlap of UN and US (homotopy equivalent to
the “equator” S3), this means that to view A as a good connection on a bundle, we have
to take it to be “pure gauge” on the northern hemisphere:

AN = U(x)−1dU(x). (6.22)

Which U(x) can we take? As the overlap of UN and US is essentially (up to the “thickness”
2ε) an S3 itself, and SU(2) is also an S3, a natural map could be the identity mapping
between these to S3s. That is, we want to take

U(x) =
1

r

(
ixiσi + x4I2

)
(6.23)

where r2 =
∑

(xi)2. This gives a nice connection AN on the equator, but can it also be
extended over the entire northern hemisphere? Here, the above definition will not do: it
clearly is invariant under an overall scaling of all the xi, and so the answer is not well
defined (it depends on the direction) if we send x→ 0. It turns out that a good extension
is to define

AN = f(r)U(x)−1dU(x) (6.24)

with f(r) a function that vanishes at r = 0 and that becomes 1 for large r. In fact, so
far we have not imposed our requirement that F = ?F yet. Imposing it, one can compute
what f(r) must be; the answer turns out to be that

f(r) =
r2

r2 + c2
(6.25)

with c a free parameter that can be thought of as the “size” of the (nontrivial part of the)
instanton.

Now what is the value of
∫
F ∧F for this instanton? In exercise 2, the answer is computed

in two steps. First of all, you will show that∫
S4

F ∧ F = −1

3

∫
S3

A ∧ A ∧ A, (6.26)

where the second integral is over the equator. Then, you will show that the integrand is
proportional to the volume 3-form ω on the sphere:∫

S3

A ∧ A ∧ A = 12

∫
S3

ω (6.27)

Using the fact that the volume of a three-sphere is 2π2, we arrive at the result that∫
S4

F ∧ F = 8π2. (6.28)
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Using more elaborate computation, one can find other instanton solutions generalizing
(6.23), for example by starting from

U(x) =
1

rn
(
ixiσi + x4I2

)n
, (6.29)

a map which “wraps” the equator S3 of S4 around SU(2) = S3 not once, but n times. It
turns out that for these configurations,∫

S4

F ∧ F = 8π2n. (6.30)

Thus, we see that
∫
F ∧ F indeed measures something topological: it measures (when

properly normalized) the “wrapping number” of the instanton. In particular, one can show
very generally that it satisfies the above quantization rule. We will not prove this result
here – it is simply a consequence of the much more general statements about characteristic
classes that we will make later.

6.3 The Berry phase

So far, we have been discussing physics situations where space-time itself is topologically
nontrivial: the Dirac monopole, the Aharonov-Bohm effect and the instanton configura-
tions discussed in the previous section. However, in most practical sitations, space-time
is simply Minkowski-space, or a curved version thereof, without nontrivial topological
features. Therefore, the reader may have started wondering how useful our topological
methods really are in practice. To ease such a worried reader’s mind, in this section we
will study a different application of topology in physics, where it is not spacetime which is
topologically trivial, but a configuration space. We will see that in this situation, all of the
same concepts play a role.

In fact, we will not specify our configuration space in much detail. (Recall, however,
from the exercises for lecture 1, that such configuration spaces, even for simple classical
mechanical systems, can have pretty much any topology we want.) We will simply assume
that our configuration space is parameterized by some parameters that we will collectively
denote by X.

Now, we are interested in the following problem. We want to find energy eigenstates of an
X-dependent hamiltonian, but in a setting where X changes slowly as a function of time.
That is, we want to study the following time-dependent Schrödinger equation:

H(X(t))|ψ(t)〉 = i
d

dt
|ψ(t)〉 (6.31)

where as usual, we have set ~ = 1. Moreover, suppose that we have already solved the
eigenvalue problem for any fixed value of X. That is, we know the eigenvalues En(X) and
the eigenstates |n,X〉 solving the equation

H(X)|n,X〉 = En(X)|n,X〉 (6.32)
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Finally, we assume that our changes in X are small enough that different eigenvalues En(X)
never cross. Can we use this information to construct |ψ(t)〉?

Formally, one could solve (6.31) by integrating and exponentiating the operator H(R(t)).
Attempting to do this at the level of a single eigenvalue might lead one to a guess of the
form

|ψ(t)〉 ≈ exp

(
−i
∫ t

0

En(X(s))ds

)
|n,X(t)〉. (6.33)

However, it is clear that this does not quite work: taking the time derivative of the right
hand side does not just get the prefactor En(X(t)) from differentiating the first factor, it
also leads to a derivative of the state itself:

i
d

dt
|ψ(t)〉 = En(X(t))|ψ(t)〉+ i exp

(
−i
∫ t

0

En(X(s))ds

)
d

dt
|n,X(t)〉 (6.34)

whereas acting with H(X(t)) on |ψ(t)〉 only gives the first term.

It was Michael Berry who observed that the above problem can be solved by adding an
additional phase to the construction of |ψ(t)〉:

|ψ(t)〉 = exp

(
iη(t)− i

∫ t

0

En(X(s))ds

)
|n,X(t)〉. (6.35)

Taking this phase into account leads to an extra term when taking the t-derivative, and so
the Schrödinger equation now has two leftover terms when we plug in |ψ(t)〉:

0 = −dη(t)

dt
|ψ(t)〉+ i exp

(
iη(t)− i

∫ t

0

En(X(s))ds

)
d

dt
|n,X(t)〉. (6.36)

We now take the inner product of this equation with 〈n,X(t)| and obtain

dη(t)

dt
= i 〈n,X(t)| d

dt
|n,X(t)〉. (6.37)

Before continuing with this expression, note that the right hand side is real: its complex
conugate is

−i
(
d

dt
〈n,X(t)|

)
|n,X(t)〉 (6.38)

and subtracting this from the previous expression we het the time derivative of

〈n,X(t)|n,X(t)〉 = 1, (6.39)

which clearly vanishes. Thus, dη/dt equals its complex conjugate: it is real, and so we can
indeed speak of an added phase in our quantum state.
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Integrating our result now gives an expression for η(t) itself:

η(t) = i

∫ t

0

〈n,X(s)| d
ds
|n,X(s)〉 (6.40)

which after a change of variables we may also write as

η(t) = i

∫ X(t)

X(0)

〈n,X| d
dX
|n,X〉dX. (6.41)

Note that the integrand is not a total derivative itself, so that even when X(0) = X(t), the
phase may not vanish. That is: the phase does not just depend on the point in configuration
space, it also depends on how that particular configuration was obtained. Moreover, it
explicitly depends on the energy level n, so if we start from a certain configuration and
go through a topologically nontrivial loop, different energy eigenstates will obtain different
phases.

6.3.1 Rephrasing in bundle language

The above can be rephrased in a language which makes use of the bundles and connections
that we have seen so far. First of all, note that any state |ψ〉 is physically equivalent to
the state eiφ|ψ〉. In other words, we can view any space of states as a U(1) bundle over a
smaller base space M :

M = {states}/ ∼ (6.42)

where ∼ is the equivalence mentioned above. We should think of our parameter(s) X
introduced above as coordinates on this M , and as the states |n,X〉 as sections of the
U(1)-bundle. The phase is then the integral of a connection obtained from this section:

A = 〈n,X| · d|n,X〉 (6.43)

To see that this makes sense as a connection on a principal U(1) bundle, note that the ket
vector 〈n,X| indeed has the opposite phase of the corresponding bra vector, so that this
is precisely the way in which one defines a connection. With some more work, one can
show that indeed, A satisfies all further conditions for a connection one-form on a principal
bundle.

What is the physical relevance of this Berry connection? We will see an example in exercise
3, where you will show that in certain physical problems involving “slow” and “fast” degrees
of freedom, the latter can be integrated out of the problem – at the expense that the
hamiltonian for the slow degrees of freedom now must be phrased in terms of covariant
derivatives, where the relevant connection is precisely the Berry connection.
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